Possible Solution: Motor in wheel to reduce transmission losses

Primary Objectives:•High Efficiency•Low Weight

Secondary Objectives: •High Reliability •Low Cost

Problem with this Concept:

Rotational speed of wheel is low \approx 360rpm \succ Electric motors most efficient at higher frequencies \approx 15,000rpm > Low rpm, high torque motors are heavy Why? Low RPM Low speed of magnets relative to coils Low voltage induced in coils

> Stronger magnets and more coils need to be used

Reduction Gearing – Defeats purpose of in wheel motor!

More Coils and

Low speed of magnets relative to coils

Low ltage i duced i coil

Bigger, stronger magnets and more roils need to be used

Idea: Place magnets close to the rim where their speed will be highest

Concept Sketch:

What's happening?!

Concept Shell Eco-Marathon Car wheel modeled on a bicycle

Attached Magnets to the Wheel
Constructed Multiple Cores
Fitted Equipment to the Bicycle

Spacing of Magnets

132 Magnets – Must be a multiple of 2

Concept Generation

Prototyping

Testing & Analysis

Tested Maximum Efficiency:

Testing Procedure: Power In

Power In

Testing Procedure: Power Out

Efficiency vs Load

Why was the efficiency so low?

